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ABSTRACT

Instruction-tuned large language models (LLMs) have been shown

to be viable surrogates for the widely used, albeit overly rigid, lexi-

cal matching metrics in evaluating question answering (QA) models.

However, these LLM-based evaluationmethods are invariably based

on proprietary LLMs. Despite their remarkable capabilities, pro-

prietary LLMs are costly and subject to internal changes that can

affect their output, which inhibits the reproducibility of their results

and limits the widespread adoption of LLM-based evaluation. In

this demo, we aim to use publicly available LLMs for standardiz-

ing LLM-based QA evaluation. However, open-source LLMs lag

behind their proprietary counterparts. We overcome this gap by

adopting chain-of-thought prompting with self-consistency to build

a reliable evaluation framework. We demonstrate that our evalu-

ation framework, based on 750M and 7B open LLMs, correlates

competitively with human judgment, compared to most recent

GPT-3 and GPT-4 models. Our codebase and data are available at

https://github.com/castorini/qa-eval.
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retrieval results.

KEYWORDS

Question Answering, Evaluation, Large language models

ACM Reference Format:

Ehsan Kamalloo, Shivani Upadhyay, and Jimmy Lin. 2024. Towards Robust

QA Evaluation via Open LLMs. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’24), July 14–18, 2024, Washington, DC, USA. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3626772.3657675

1 INTRODUCTION

Evaluating question answering (QA) models requires matching can-

didate answers with a set of predefined gold answers. This type of

answer equivalence matching is often done based on lexical match-

ing [31]. Despite its widespread adoption and simplicity, lexical

matching suffers from fundamental flaws, mostly rooted in diverse
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LLM

Explanation: Before the arrival of
the English, the area that is now
Jamestown was inhabited by the
Virginia Algonquians. Therefore,
the candidate's answer is correct.
Judgment: Yes.

Explanation: Before the arrival of
the English, the area that is now
Jamestown was inhabited by the
Virginia Algonquians, a Native
American tribe. Therefore, the
candidate's answer is correct.
Judgment: Yes.

Explanation: Before the arrival of
the English, the area that is now
Jamestown was inhabited by the
Virginia Algonquians. Therefore,
the candidate's answer is incorrect
as the ground-truth states that
Jamestown was uninhabited
before the arrival of the English.
Judgment: No.

Final
judgment:

Yes

You are an expert judge of
a content. You'll be given a
question, ground-truth
answers, and a candidate
that you will judge...
 
Question: Who lived in
Jamestown before the
arrival of the English?

Gold answer: Uninhabited

Candidate answer: Virginia
Algonquians

Figure 1: An illustration of our evaluation framework, con-

sisting of two steps: (1) Prompt preparation using the inputs

(question, gold answers, and candidate answer for evalua-

tion). We use a few examples with chain-of-thought reason-

ing to guide the LLM. (2) Generating multiple responses and

carrying out majority voting over the judgments to obtain

the final judgment (self-consistency). In the example above,

although the gold answer is not accurate, our LLM evaluator

was able to provide a correct evaluation.

forms of plausible answers not present in the gold answers [7, 8, 27].

For instance, if the gold answer is the year “1689”, “17th century”
may also be acceptable, but cannot be captured by lexical match-

ing. These flaws substantially undermine evaluation reliability [20].

Luckily, instruction-tuned large language models (LLMs) are found

to be promising alternatives for the evaluation of QA models [1, 20].

Yet, this success is all centered around proprietary LLMs such as

OpenAI’s GPT-3 [6, 29] and GPT-4 [28]. Notwithstanding their re-

markable capabilities, regular opaque changes to proprietary LLMs

[10] or the possibility of their discontinuation
1
inhibits the repro-

ducibility of these findings. Furthermore, proprietary LLMs come

with associated expenses, thus impeding their broad adoption in

evaluation, especially on large-scale datasets. Therefore, achieving

trustworthy and deterministic evaluation demands the use of fully

open-source models that are widely accessible.

In this demo, we aim to bridge this gap by introducing a stan-

dardized QA evaluation framework to make LLM-based automated

evaluation widely accessible. Inspired by trec_eval2 in informa-

tion retrieval, our main goal is to unify evaluation by presenting our

1
A family of GPT-3 models including text-davinci-003 was deprecated in Jan’24:

https://openai.com/blog/gpt-4-api-general-availability.

2
https://github.com/usnistgov/trec_eval

https://github.com/castorini/qa-eval
https://doi.org/10.1145/3626772.3657675
https://doi.org/10.1145/3626772.3657675
https://github.com/usnistgov/trec_eval
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evaluation tool to the community. One major obstacle in achieving

this goal is that open LLMs [4, 5, 37, 44] are known to lag behind

proprietary LLMs on many benchmarks [13, 24]. Moreover, the

downsized scale of LLMs that can be run on commodity hardware

may not be strong enough in that LLM capabilities become more

powerful at a larger scale [14, 21, 40]. We overcome these challenges

via two simple strategies in prompting and generation (Figure 1).

First, we follow chain-of-thought (CoT) prompting [41] to guide the

model to explain its output before making its judgment. However,

it is challenging to convey all the intricacies of evaluation through

explanation in a few examples, which contributes to reasoning er-

rors in LLM evaluation. To fix this issue, we adopt self-consistency

[39] to sample multiple explanations and obtain the final evaluation

based on a majority vote.

To test the reliability of our proposed method, we examine sev-

eral open instruction-tuned LLMs for QA evaluation and measure

their correlation with human judgment. We find that despite their

smaller size, open-source LLMs demonstrate competitive effective-

ness, compared to their proprietary counterparts.

Our evaluation framework aims to standardize QA evaluation

using open-source LLMs. We hope our effort fosters robust evalua-

tion and provides the essential means to reliably gauge progress in

QA. Our key contributions can be summarized as follows:

• We introduce a fully open-source QA evaluation tool to unify

the evaluation of QA models.

• We develop LLM-based evaluation techniques based on CoT

prompting and self-consistency to bolster reliability.

• Our framework, based on smaller-scale LLMs that can be run

on one GPU, is competitive with GPT-3 and GPT-4.

2 QA EVALUATION USING LLMS

The task of answer equivalence in QA evaluation is usually done

using lexical matching metrics: Exact-Match (EM) and F1 [31]. Dif-

ferent variants of 𝑛-gram matching [3, 25, 30] have also been used

in QA. More recently, evaluation is framed as semantic similarity,

either supervised [7, 9, 33] or unsupervised [45]. Another line of

work focuses on augmenting QA datasets using external sources

to enrich the list of gold answers [35]. With the rise of LLMs [6],

evaluation can be done by simply eliciting a prompt from an LLM

[1, 20]. Many studies [27, 34] employ humans for accurate and reli-

able evaluation. However, human judgment is not cost-effective and

difficult to scale for large datasets. This work builds on using LLMs

for automated evaluation, aiming to standardize QA evaluation

using open-source LLMs.

Our main idea to use LLMs for QA evaluation is to insert both

gold answers and candidate answers in the prompt and instruct the

model to verify whether candidate answers are acceptable. While

this approach is previously shown to be effective using proprietary

LLMs such as GPT-3 and GPT-4 [1, 20], providing only detailed

instructions does not work well for smaller open-source LLMs. To

address this gap, we propose two simple strategies, depicted in

Figure 1, to make open LLMs robust in QA evaluation. Note that

our focus in this paper is on factoid questions where answers are

typically expected to be short.

CoT prompting. Judging for QA evaluation can be non-trivial in

numerous cases and LLMs may not be able to understand all the

nuances of the task solely from the instructions. For this purpose, we

provide carefully crafted examples, derived from lexical matching

failures in the prompt [1, 20]. However, the final judgment could be

confusingwithout additional explanations. Thus, we use a CoT-style

[41] prompting approach to provide explanations for the in-context

examples. CoT prompting guides the model to explain its reasoning

before concluding its judgment. Our prompt is as follows:

You are an expert judge of a content. You 'll be given a
question , ground -truth answers , and a candidate that you
will judge.

Using your internal knowledge and simple commonsense
reasoning , and given the groundtruth answers , try to
verify if the candidate is correct or not. The
contestant may provide a candidate answer that isn 't an
exact match. Your job is to determine if the candidate
is correct or not.

Provide explanation for the comparison and give your
judgment with a "yes" or "no" in a new line. Here , "yes"
represents that the candidate answer is relevant and

correct based on either inbuilt knowledge or ground -
truth answers. If not , the judgment based on the
explanation should be "no".

Examples in prompts are sampled from the NQ-open [23] dev set.

Self-consistency. Even with the provided examples in the prompt,

models may still be prone to reasoning errors. For instance, LLMs

may generate correct explanations, but arrive at a wrong judgment.

These types of errors suggest that the model is already equipped

with sufficient knowledge and capabilities to reason about the cor-

rectness of a candidate answer but under some circumstances such

as an “unlucky” sample during decoding, it fails. As a remedy, we

use self-consistency [39] by sampling multiple responses from an

LLM, followed by taking a majority vote to determine the outcome.

This simple approach ensures that the model selects the most con-

sistent answer, thereby reducing the likelihood of reasoning errors.

3 EXPERIMENTAL SETUP

Our experiments are performed on a subset of 301 questions, de-

rived from NQ-open [23], following Kamalloo et al. [20]. We take

generated answers from 12 QA models that fall into two paradigms:

closed-book and retriever-reader. In total, we examined 12 QAmodels

taken from Kamalloo et al. [20]: DPR [22], Fusion-In-Decoder (FiD;

[18]), Contriever [16], RocketQAv2 [32], FiD-KD [17], ANCE [43],

GAR [26], R2-D2 [12], EMDR
2
[36], EviGen [2], and InstructGPT [29]

in two settings: zero-shot and few-shot.

For evaluating these QA models, we experimented with multiple

instruction-tuned LLMs:

• Open-source LLMs. We use FLAN-T5-large3 (750M) [11],

Mistral-7B-Instruct4 [19], and Zephyr-7B5 [38]. Our ini-

tial experiments showed that LLMs without instruction-tuning

such as Llama-2 [37] do not work well here.

• Proprietary LLMs. We use GPT-3.5
turbo

(gpt-3.5-1106) and
GPT-4

turbo
(gpt-4-1106-preview), and GPT-4 (gpt-4-0314)

results from Kamalloo et al. [20] as a reference. We do not use

3
https://huggingface.co/google/flan-t5-large

4
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

5
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

https://huggingface.co/google/flan-t5-large
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
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Models Human
† Lexical zero-shot few-shot

EM F1 GPT-4
†

GPT-3.5
turbo

GPT-4
turbo

GPT-3.5
turbo

GPT-4
turbo

FLAN
large

Mistral Zephyr

InstructGPT (zero-shot) 71.4 12.6 27.5 68.8 60.5 65.1 62.8 67.4 58.5 70.1 69.8

InstructGPT (few-shot) 75.8 33.9 50.5 68.8 68.1 71.1 67.1 72.1 70.8 68.1 71.1

DPR 58.8 45.9 52.3 56.5 56.5 58.1 53.5 58.1 50.2 57.8 56.5

FiD 64.8 47.8 55.4 61.8 59.5 61.5 57.1 61.8 56.8 63.1 63.5

ANCE+ & FiD 65.8 48.2 55.9 62.5 60.5 62.8 58.8 63.5 57.1 63.5 63.8

RocketQAv2 & FiD 70.1 49.8 58.7 67.1 64.5 67.8 61.1 68.1 59.5 65.1 65.8

Contriever & FiD 66.5 46.5 55.9 64.8 61.8 64.1 58.5 65.5 56.8 61.1 64.1

FiD-KD 73.1 50.8 61.2 69.4 67.4 69.4 65.5 69.8 61.5 67.4 69.4

GAR+ & FiD 69.4 50.8 59.7 67.4 64.1 65.5 61.5 65.8 60.1 64.8 66.8

EviGen 67.1 51.8 59.5 66.1 62.8 64.8 61.1 65.5 57.5 63.5 63.8

EMDR
2

73.1 53.2 62.6 68.4 73.8 71.8 67.1 72.8 58.8 68.1 67.8

R2-D2 71.4 52.8 61.4 65.8 64.5 69.1 64.1 68.1 61.8 68.1 69.4

Table 1: Accuracy of 12 QA models on 301 sampled questions from NQ-open using different evaluation methods: human,

lexical matching, zero-shot LLMs, and few-shot LLMs. GPT models are proprietary, whereas FLAN-T5, Mistral, and Zephyr

are open-source. Different shades of blue indicate the best , second best , and third best under each evaluation method.

†
denotes a result taken from Kamalloo et al. [20].

Evaluator Spearman Kendall

Le
xi
ca
l

EM 22.0 23.3

F1 30.2 36.9

ze
ro
-s
ho
t

GPT-4 90.2 79.1

GPT-4
turbo

95.8 89.2

Zephyr 86.5 69.8

fe
w-
sh
ot

GPT-3.5
turbo

97.4 90.6

GPT-4
turbo

97.0 90.6

FLAN
large

86.5 72.9

Mistral 88.5 76.2

Zephyr 93.0 81.2

Table 2: Spearman andKendall’s 𝜏 correlations between open-

source and proprietary LLMs and human judgment.

self-consistency for proprietary LLMs because their results are

acceptable without self-consistency.

For the experiments, we first rank the QA models utilizing different

LLM evaluators. These rankings are then compared with human

annotations [20] to compute Spearman and Kendall 𝜏 ’s correlations

to quantify the quality of the evaluation model.

4 RESULTS

Correlation Results. In Table 1, the accuracy of QA models is

reported based on human judgment as well as automated methods,

i.e., lexical metrics, zero-shot LLMs, and few-shot LLMs. All QA

models consistently demonstrate an increase in accuracy under

human judgment and LLM-based evaluation, compared to lexical

metrics. Notably, the average absolute error across the QA models

is only slightly different between GPT-4
turbo

(few-shot) with 2.4%,

and the open-source model, Zephyr, with 3.0%.

Table 2 presents Spearman and Kendall’s 𝜏 correlations with

human judgment in ranking the QA models. Figure 2 visualizes the

correlation for the automated evaluation methods. The few-shot

LLM-based evaluation using GPT-3.5
turbo

and GPT-4
turbo

along
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H
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m

en
t
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H
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t

Figure 2: Scatter plots visualizing the correlation of evalu-

ation methods: GPT-4
turbo

(left), and Zephyr (right), both

few-shot v.s. human judgment.

with the open-source Zephyr model exhibit a strong correlation

with human judgment,
6
although the correlations of the proprietary

LLMs are near-perfect. These strong correlations suggest that LLMs

are reliable for comparing the effectiveness of QA models.

Error Analysis. We analyze to what extent LLMs are able to

amend lexical matching errors. We follow the lexical matching

failure modes specified in Kamalloo et al. [20]:

• Semantic Equivalence:Model predictions and gold answers

express similar meanings without using identical wording, e.g.,

“3” vs. “three” or “USA” vs. “America”.
• Symbolic Equivalence: For numerical answers, gold answers

and predicted ones could be the same, either precisely or ap-

proximately, even though their surface texts are different, e.g.,

“about 3.99 degrees” vs. “3.97 degrees”.
• Granularity Discrepancies: When answers include tempo-

ral/spatial references, predicted and reference answers may

differ in granularity, e.g., “2000” vs. “8 Nov, 2000”.
• Intrinsic Ambiguity in Questions: Ambiguous questions

can be interpreted in several ways, each potentially resulting in

different answers, e.g. “When does the new episode of Scorpion
come on?”

6
Based on the rule-of-thumb that correlation greater than 0.8 is typically considered

“very strong” in the statistics literature.
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Figure 3: Frequency of lexical matching failure modes for

each evaluation method. All LLM-based evaluation methods

rectify most errors for three modes: semantic equivalence,

symbolic equivalence, and granularity discrepancy.

• Incomplete Reference Answers: Acceptable answers consist

of a range of plausible answers that are not completely provided

in the list of gold answers.

• Incorrect Reference Answers: In QA datasets, reference an-

swers are sometimes erroneously labelled, leading to the rejec-

tion of actually correct predicted answers.

Results using the failure mode categorizations from Kamalloo et al.

[20] are showcased in Figure 3. We see that LLM-based evalua-

tion methods successfully fix most of the failures corresponding

to semantic equivalence, granularity discrepancy, symbolic equiv-

alence, and incomplete reference answers, while having limited

impact on failures stemming from data quality issues. The gap be-

tween proprietary LLMs and open-source LLMs is negligible in all

error categories except for semantic equivalence and granularity

discrepancy, where the difference is nearly 2%.

Ablation Study. To investigate the impact of CoT prompting and

self-consistency in evaluating QA models, we conduct an ablation

study of our evaluation framework, considering three variants:

(1) No CoT + No Self-Consistency: Zero-shot prompting and

generate 𝑛 = 1 response using beam search (beam size=10).

(2) No CoT + Self-Consistency: Zero-shot prompting and gener-

ate 𝑛 responses using beam search.

(3) CoT + No Self-Consistency: Few-shot prompting and gener-

ate 𝑛 = 1 response using beam search.

We also evaluate the impact of the decoding algorithm as well as

the number of generated responses (𝑛). We compute the ranking

correlation of each variant with human judgment.

The results, presented in Table 3, highlight the importance of

both CoT and self-consistency in achieving robust evaluation. An-

other interesting observation is that increasing the number of gen-

erated responses (𝑛 = 9) yields modest improvements but at the

expense of slower run-time; hence, we opt for 𝑛 = 3 by default.

5 PACKAGE OVERVIEW

Our evaluation framework is shipped as a Python package and also

hosted on GitHub. It can be easily installed as follows:

$ pip install git+github.com/castorini/QA-eval

Decoding Alg. Spearman Kendall

CoT + Self-C. Beam 𝑛 = 3 93.0 81.2

No CoT + No Self-C. Beam 𝑛 = 1 81.6 -11.4↓ 64.3 -16.9↓
No CoT + Self-C. Beam 𝑛 = 3 86.5 -6.5↓ 69.8 -11.4↓
CoT + No Self-C. Beam 𝑛 = 1 87.4 -5.6↓ 73.9 -8.3↓
CoT + Self-C. Beam 𝑛 = 9 93.8 +0.8↑ 82.2 +1.0↑
CoT + Self-C. Nucleus 𝑛 = 3 89.8 -3.2↓ 79.1 -2.1↓

Table 3: Ablation analysis of our evaluation framework.

Spearman and Kendall’s 𝜏 correlations of Zephyr judgments

under different variants v.s. human judgment. Self-C. refers

to self-consistency. Decoding algorithms are beam search and

nucleus sampling [15]. 𝑛 denotes the number of responses,

sampled from Zephyr during generation.

We support OpenAI APIs for GPT-3 and GPT-4 models as well as

the open-source LLMs we examined in this paper via Huggingface

[42]. Our tool offers a simple, unified interface for running QA

evaluation via a simple invocation:

$ python -m qaeval /path/to/prediction.jsonl \
--model MODEL

where MODEL refers to the evaluation model name that can either be

a proprietary GPTmodel or a Huggingfacemodel. Also, it is possible

to adjust generation parameters, including the maximum number

of tokens to generate, temperature, greedy decoding or sampling,

and the number of generated samples. Details are provided in our

documentation. System outputs to be evaluated are passed as a

jsonl file with the following structure:

{
"question ": "what is the boiling temperature for
water",
"answer ": ["212 ◦F (100 ◦C)"],
"prediction ": "100 degrees C"

}

This package allows researchers to reproduce the results in this

paper and to evaluate their own QA systems.

6 CONCLUSION

For QA evaluation, the widely used lexical matching technique

inherently fails to match semantically similar answers that do not

exist within the gold answers. Luckily, instruction-tuned LLMs have

proven to be promising alternatives for lexical matching. Nonethe-

less, existing efforts to leverage LLMs for QA evaluation overwhelm-

ingly rely on opaque, proprietary LLMs. In this work, we introduce

an evaluation framework using open LLMs to standardize LLM-

based QA evaluation. Our recipe is simple, building on CoT prompt-

ing and self-consistency. Our proposed framework, captured in a

tool we share with the community, performs competitively with

opaque and substantially larger proprietary models.
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