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ABSTRACT
BEIR is a benchmark dataset originally designed for zero-shot eval-
uation of retrieval models across 18 different domain/task combi-
nations. In recent years, we have witnessed the growing popularity
of models based on representation learning, which naturally begs
the question: How effective are these models when presented with
queries and documents that differ from the training data? While
BEIR was designed to answer this question, our work addresses two
shortcomings that prevent the benchmark from achieving its full
potential: First, the sophistication of modern neural methods and
the complexity of current software infrastructure create barriers to
entry for newcomers. To this end, we provide reproducible refer-
ence implementations that cover learned dense and sparse models.
Second, comparisons on BEIR are performed by reducing scores
from heterogeneous datasets into a single average that is difficult to
interpret. To remedy this, we present meta-analyses focusing on ef-
fect sizes across datasets that are able to accurately quantify model
differences. By addressing both shortcomings, our work facilitates
future explorations in a range of interesting research questions.
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1 INTRODUCTION
One recent conceptual innovation in information retrieval is the
recognition that the “classic” task of ad hoc retrieval can be framed
as a representation learning problem. Karpukhin et al. [21] demon-
strated that transformers can be used to encode queries and docu-
ments into a dense vector space, where top-𝑘 retrieval translates
into the problem of nearest neighbor search. This led to the develop-
ment of many so-called dense retrieval models [17, 21, 22, 34, 35, 45].
Separately, Zamani et al. [48] showed that neural networks can be
used to learn sparse representations of queries and documents that
are amenable to retrieval using standard inverted indexes. Later,
researchers applied transformers for learning these sparse lexical
representations, which led to a long line of so-called sparse retrieval
models [1, 6, 10, 11, 19, 24, 27].

Lin [25] pointed out that learned dense representations, learned
sparse representations, and even traditional lexical retrieval models
such as BM25 can be viewed as parametric variations of a bi-encoder
architecture. In this design, both queries and documents are fed
to “encoders” that generate vector representations. Retrieval boils
down to the problem of efficiently finding the top-𝑘 most simi-
lar document representations given a query representation and a
similarity function, usually the inner product.

The design of encoders in such a bi-encoder architecture is dic-
tated primarily by two choices: (1) the basis of the vector space and
(2) how the vector weights are assigned. For example, both dense
models such as DPR and sparse models such as SPLADE use pre-
trained transformers to encode queries and documents into vectors;
both take advantage of large amounts of manually labeled data.
However, the critical difference is the representational basis of their
vectors—DPR generates dense vectors, whereas SPLADE “projects”
the scalar weights of each dimension back into the input vocabulary
space, generating bag-of-tokens vectors. BM25 can be understood
in this bi-encoder architecture as having a document “encoder” that
was heuristically designed (the BM25 scoring function) and a query
“encoder” that generates multi-hot vectors.

Viewing retrieval as representation learning not only helps us
understand the relationship between different models, but immedi-
ately illuminates open research questions. The dominant approach
today is based on supervised learning with (manually) labeled
datasets such as the MS MARCO test collections [2]. This natu-
rally begs the question: What happens when models are applied
to out-of-distribution data? Examples include applying retrieval
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models trained on one type of text (e.g., passages from the web) to
another type of text (e.g., text from the medical or legal domain), or
differences between training and test queries (e.g., keyword queries
vs. well-formed natural language questions).

This is where BEIR (Benchmarking IR) [40] comes in. BEIR is a
benchmark for zero-shot evaluation of information retrieval models
that enables exactly the types of explorations outlined above. For
example, BEIR has shown that traditional lexical retrieval models
such as BM25 remain competitive baselines—and in fact, the first
dense retrieval models evaluated on BEIR were worse overall than
BM25 in a zero-shot setting.With BEIR, researchers have discovered
that sparse retrieval models appear to achieve better cross-domain
generalization than dense retrieval models. The dataset has spurred
entirely new lines of research—for example, on unsupervised repre-
sentation learning [18], where BEIR served as the benchmark for
demonstrating model effectiveness.

Nevertheless, we can identify two shortcomings in the state
of the current BEIR ecosystem. First, the variety and complexity
of modern neural retrieval models create barriers to entry for re-
searchers who wish to explore the research questions that BEIR
enables. Successfully executing an end-to-end retrieval run requires
coordinating heterogeneous software components that differ de-
pending on the model type. It would be desirable to have repro-
ducible implementations of retrieval models that are easily accessi-
ble to everyone, particularly newcomers.

Second, there is no agreed-upon methodology to perform sig-
nificance testing for BEIR, since it is organized as an aggregation
of diverse, heterogeneous individual datasets. Although one could
perform tests on each dataset, significance testing across the final
macro-average would not be meaningful since the datasets diverge
so much in corpus size, number of queries, number of judgments,
and many other dimensions [7, 32, 38]. We feel that there is cur-
rently no good way to answer the question: Is one retrieval model
significantly better than another across different domains?

The good news is that meta-analyses [38], borrowed from statis-
tics, offer a robust solution to integrate information from multiple
sources with the objective of deriving a holistic conclusion. Meta-
analyses allow us to estimate the effect size for each task and then to
compute a summary statistic by aggregating the individual effects.
This approach has been previously proven effective in reporting
results across various IR tasks [16, 37, 38]. It would be desirable if
we could apply similar techniques to assess statistical significance
on BEIR.

Contributions. This work builds on BEIR and aims to address the
two main shortcomings discussed above. We make the following
contributions:
• We share with the community reproducible implementations of
five popular retrieval models for BEIR in the open-source Pyserini
IR toolkit [28]. From our extensive documentation pages, an end-
to-end retrieval run can be reproduced with only two clicks: copy
and paste of a command-line invocation.

• We describe the methodological innovation of using radar charts
to visualize the effectiveness of different retrieval models across
the BEIR datasets. These visualizations allow a researcher to
quickly pinpoint the source of gains and losses with respect to a
baseline, providing an entry point for error analyses.

Dataset #Q #J #Passages Task Domain

TREC-COVID 50 66,336 171,332
Bio-Medical IR Bio-MedicalBioASQ 500 2,359 14,914,602

NFCorpus 323 12,334 3,633

NQ 3,452 4,201 2,681,468
QA

Wikipedia
HotpotQA 7,405 14,810 5,233,329 Wikipedia
FiQA-2018 648 1,706 57,638 Finance

Signal-1M (RT) 97 1,899 2,866,316 Tweet-Retrieval Twitter

TREC-NEWS 57 15,655 594,977 News-Retrieval NewsRobust04 249 311,410 528,155

ArguAna 1,406 1,406 8,674 Argument-Retrieval Misc.Touché 2020 49 2,214 382,545

CQADupStack 13,145 23,703 457,199 Dup. Ques.-Retrieval StackExc.
Quora 10,000 15,675 522,931 Quora

DBPedia 400 43,515 4,635,922 Entity-Retrieval Wikipedia

SCIDOCS 1,000 29,928 25,657 Citation-Prediction Scientific

FEVER 6,666 7,937 5,416,568
Fact Checking

Wikipedia
Climate-FEVER 4,681 4,682 5,416,593 Wikipedia
SciFact 300 339 5,183 Scientific

Table 1: Summary of the 18 datasets that comprise the BEIR
benchmark. #Q and #J denote the total counts of queries and
relevance judgments in the test split of each dataset.

• We present a robust comparison of baselines by conducting meta-
analyses on BEIR. Our results are visualized in forest plots to
highlight on what tasks models excel and where they falter.

• We explore variations of existing retrieval models that exam-
ine field indexing, wordpiece tokenization, sliding window tech-
niques for handling long documents, and hybrid fusion. Analyses
of these variants with radar charts provide additional insights
into model effectiveness.

2 BEIR OVERVIEW
The BEIR benchmark, introduced by Thakur et al. [40], evaluates
information retrieval systems across diverse combinations of tasks
and domains. It originally targets the “zero-shot” retrieval setting,
where evaluation occurs on tasks and domains without any training
data or supervision signals. This benchmark drives innovation in
more robust and adaptable retrieval methods, enabling researchers
to explore their out-of-domain generalization capabilities.

BEIR encompasses a wide range of tasks, from traditional ad
hoc retrieval tasks like the TREC 2004 Robust Track to more spe-
cialized tasks such as Natural Questions (NQ) [23], which involves
retrieving English Wikipedia passages to answer natural language
questions. Additionally, BEIR tasks include argument retrieval (e.g.,
ArguAna, Touché 2020) and fact checking (e.g., FEVER, SciFact),
which are related to, but distinct from, traditional ad hoc retrieval.
BEIR also spans various domains, including scientific articles, news,
Wikipedia, tweets, and more. Furthermore, queries in BEIR vary
widely in form and length, ranging from a few keywords [4] to para-
graphs [41]. Table 1 summarizes the 18 datasets that comprise BEIR.
The datasets range in the amount of relevance judgments available.
A few datasets have “dense” judgments, such as TREC-COVID [36],
with 66k judgments for 50 test queries, but many have “sparse”
judgments, such as SciFact, with only 339 judgments. The corpora
associated with the datasets also vary in size, some containing mil-
lions of passages, whereas others have only a few thousand. BEIR
also standardizes its evaluation metric and uses nDCG@10 and
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Recall@100 across all datasets to compare the effectiveness of each
system on an equal footing. Individual scores are macro-averaged
across all datasets for a final cumulative score.

The BEIR authors provide additional resources with the bench-
mark. They share a GitHub repository1 that contains source code
for the evaluation framework along with example usage. The code
is written in Python and is available on PyPI (pip install beir).

3 RETRIEVAL MODELS
This work provides reproducible reference implementations of five
different retrieval models for BEIR. These comprise a “bag-of-words”
BM25 baseline, two learned dense retrieval models (TAS-B and
Contriever), and two learned sparse retrieval models (uniCOIL
without expansion and SPLADE). In this section, we provide an
overview of these models as they are presented in the literature,
but explore different model variants in Section 6.

3.1 Multi-Field BM25
Despite tremendous progress in neural retrieval, ranking using
traditional lexical “bag-of-words” models such as BM25 remains a
strong baseline.

The original BEIR paper presented a BM25 baseline using Elas-
ticsearch. We refer to this as “multi-field” BM25 because it ingested
the title and body of documents into separate fields (called “title”
and “contents”, respectively) in cases where the original corpus
provided this information. For corpora that didn’t, all content was
ingested into the default “contents” field. Search was performed
by generating a Lucene multi-field query that assigned both fields
equal weight. For corpora that did not explicitly have titles, the
multi-field queries yielded the same ranking as if only the main
“contents” field had been indexed and queried.

Building a baseline using Elasticsearch has the disadvantage in
that it exists as an out-of-process retriever, which creates additional
friction for researchers who desire a simple development/evaluation
cycle. This was discussed by Devins et al. [9], who noted that since
Elasticsearch is built on the open-source Lucene search library,
researchers could “bypass” the features offered by Elasticsearch to
directly gain in-process access to retrieval capabilities. From the
perspective of batch IR evaluations such as BEIR, this was expedient
because the additional layers that Elasticsearch builds on top of
Lucene provide little value to researchers.

A later iteration of the BEIR evaluation resources moved from
Elasticsearch to the Pyserini IR toolkit, but this feature was never
refined into a reproducible baseline that could be easily invoked by
researchers. In this work, we complete this “packaging” and explore
additional BM25 variants (see Section 6).

3.2 Learned Dense Retrieval Models
We examine two learned dense retrieval models. This class of mod-
els exhibits two key characteristics: use of dense semantic repre-
sentations for retrieval and encoders for generating these represen-
tations that are trained with labeled datasets.

1https://github.com/beir-cellar/beir

TAS-B. This is a BERT-based dense retrieval model proposed
by Hofstätter et al. [17], where the primary innovation is a Bal-
anced Topic Aware Sampling (TAS-B) strategy to assemble training
batches for optimizing retrieval effectiveness in a data-efficient
manner. It was one of the earliest dense retrieval models to success-
fully exploit knowledge distillation, using dual supervision from
a cross-encoder model and ColBERT. TAS-B was one of the first
dense retrieval models to be applied to BEIR, and was discussed in
the original paper by Thakur et al. [40].

Contriever. This is a dense retrieval model proposed by Izacard
et al. [18] that first applies retrieval-specific pretraining in an unsu-
pervised manner (an Inverse Cloze Task variant) before fine-tuning
with the MS MARCO passage dataset to optimize for retrieval ef-
fectiveness. Contriever also builds on a BERT backbone and was
specifically designed to explore zero-shot domain transfer capabil-
ities. At its introduction, it was among the most effective dense
retrieval models available on the BEIR benchmark.

3.3 Learned Sparse Retrieval Models
We examine two learned sparse retrieval models. Like their dense
counterparts, these models rely on an approach to retrieval based
on representation learning that exploits labeled datasets. However,
these models generate sparse lexical representations instead of
dense semantic ones.

uniCOIL (noexp). This model, originally proposed by Lin and
Ma [27], is a variant of COIL [13], where BERT is trained to assign
scalar weights to document tokens based on manually labeled rele-
vance data (the MS MARCO passage dataset) to optimize retrieval
effectiveness. In the full setting, uniCOIL depends on a separate
document expansionmodel [30], but here we use the “no expansion”
(noexp) variant, which allows us to examine the domain transfer
capabilities of a “basic” learned term weighting function.

SPLADE. This refers to a family of sparse retrieval models [10,
11] that learns both document/query expansion and term weighting
with the help of a regularization factor to induce sparsity. More
precisely, we use the SPLADE++ (CoCondenser-EnsembleDistil)
model [11],2 which as the name implies, uses distillation and the
pretrained CoCondenser model [12]. Today, this model remains
highly effective, particularly in a zero-shot setting.

4 MAIN RESULTS
The effectiveness of the five models presented in the previous sec-
tion is shown in Table 2, with nDCG@10 in the left group of columns
and Recall@100 in the right group of columns. Each row corre-
sponds to one of the BEIR datasets, and the rows are ordered in the
same manner as Thakur et al. [40].

4.1 Reporting Best Practices
We have seen previous papers report BEIR results using slightly
different layouts and organizations, which make comparisons dif-
ficult. Moving forward, we offer a few best practices to promote
consistency in how results are shared: We feel that presenting the
datasets in rows and effectiveness metrics in columns feels more
2https://huggingface.co/naver/splade-cocondenser-ensembledistil
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Dataset nDCG@10 Recall@100
BM25 uniCOIL SPLADE TAS-B Contriever BM25 uniCOIL SPLADE TAS-B Contriever

TREC-COVID 0.656 0.640 0.727 0.505 0.596 0.114 0.111 0.128 0.090 0.091
BioASQ 0.465 0.477 0.498 0.371 0.383 0.715 0.731 0.739 0.598 0.607
NFCorpus 0.325 0.333 0.347 0.324 0.328 0.250 0.257 0.284 0.284 0.301
NQ 0.329 0.425 0.538 0.465 0.498 0.760 0.833 0.930 0.904 0.925
HotpotQA 0.603 0.667 0.687 0.584 0.638 0.740 0.798 0.818 0.728 0.777
FiQA-2018 0.236 0.289 0.347 0.296 0.329 0.539 0.553 0.631 0.582 0.656
Signal-1M 0.330 0.275 0.301 0.288 0.278 0.370 0.313 0.340 0.304 0.322
TREC-NEWS 0.398 0.374 0.415 0.394 0.428 0.422 0.357 0.441 0.454 0.492
Robust04 0.407 0.403 0.468 0.461 0.473 0.375 0.317 0.385 0.411 0.392
ArguAna 0.414 0.396 0.520 0.436 0.446 0.943 0.923 0.974 0.945 0.977
Touché 2020 0.367 0.298 0.247 0.222 0.204 0.538 0.485 0.471 0.526 0.442
CQADupStack 0.299 0.301 0.334 0.309 0.345 0.606 0.569 0.650 0.612 0.663
Quora 0.789 0.662 0.834 0.835 0.865 0.973 0.948 0.986 0.986 0.994
DBPedia 0.313 0.338 0.437 0.384 0.413 0.398 0.441 0.562 0.499 0.541
SCIDOCS 0.158 0.144 0.159 0.146 0.165 0.356 0.328 0.373 0.332 0.378
FEVER 0.753 0.812 0.788 0.733 0.758 0.931 0.955 0.946 0.945 0.949
Climate-FEVER 0.213 0.182 0.230 0.237 0.237 0.436 0.418 0.521 0.553 0.575
SciFact 0.665 0.686 0.704 0.644 0.677 0.908 0.912 0.935 0.894 0.947

Avg. nDCG@10 0.429 0.428 0.477 0.424 0.448 0.576 0.569 0.618 0.591 0.613

Table 2: Effectiveness results of five retrieval models across all 18 datasets in BEIR: nDCG@10 (left) and Recall@100 (right).

natural, and urge the community to also adopt this layout. The
alternative of showing the different datasets in columns feels more
awkward to us. Furthermore, we recommend that researchers order
the rows exactly as Thakur et al. [40], which we have done here.
Other reasonable alternatives, for example, alphabetical sorting,
discard the “semantic grouping” of the datasets. Finally, it would
be preferable if researchers evaluating on BEIR report results on
all 18 datasets, as opposed to slightly different subsets that make
results difficult to compare.

Encouraging consistency in the presentation of BEIR results is
an important first step to gaining insight when comparing retrieval
models. However, there is no hiding the fact that BEIR scores com-
prise a complex aggregation of diverse datasets, and the standard
approach of comparing macro-averaged nDCG@10 scores (as we
have done in the final row of Table 2) is deficient in many ways.

It is well known that averages often hide important individual
differences, but teasing apart these differences from a large table of
numbers such as Table 2 can be difficult. For example, the results
show that uniCOIL and BM25 achieve a similar level of effectiveness
overall (0.428 vs. 0.429), but what can we say about effectiveness
on individual datasets? Glancing down the rows, we see many
differences—some large, some small—so it is possible to conclude
that although uniCOIL and BM25 are “about the same” averaged
across the BEIR datasets, effectiveness on individual datasets differ.
How can we gain more insight easily? The same question applies
when comparing BM25 and TAS-B, where the average nDCG@10
scores are comparable. Consider the SPLADE and Contriever results:
we see that both achieve a higher average across all the datasets,
but is this due to consistent gains across many datasets or a few
big gains? It’s difficult to tell from Table 2.

4.2 Radar Charts
We present a potential solution to these challenges in terms of radar
charts: Figure 1 shows visualizations comparing the effectiveness
of the five retrieval models, with nDCG@10 and Recall@100, re-
spectively. Each radar chart comprises 18 axes, arranged radially, in
the same order as the rows in Table 2. The effectiveness of a model
is plotted on each of the 18 axes and connected by line segments
to form a polygon. The effectiveness of BM25, which serves as a
baseline, is scaled to half of the radius of the entire chart area, so
the effectiveness of BM25 is captured by the dotted polygon. The
effectiveness of the other models on each dataset is scaled relative
to BM25. That is, points further away from the center represent
higher scores and points closer to the center represent lower scores,
where the distance to the midpoint of the axis is proportional to
the score difference with respect to BM25.

The radar charts allow us to easily compare the effectiveness of
the models across all datasets, and differences that are obscured by
averages come readily to light. Focusing on nDCG@10, consider the
question above about BM25 vs. uniCOIL (orange): We can see that
uniCOIL excels on HotpotQA and NQ in terms of nDCG@10, but
otherwise achieves effectiveness that is either on par with BM25
or worse. In particular, on Signal-1M, Quora, and Touché 2020,
uniCOIL is substantially worse. We see a similar situation with TAS-
B, which is more effective on some datasets but performs terribly
on others, most notably TREC-COVID, BioASQ, and Touché 2020.
Inconsistent effectiveness is similarly observed with Contriever as
well, even though on average the model scores higher than BM25. It
appears that both dense retrieval models perform rather poorly on
BioASQ and TREC-COVID, two datasets that focus on biomedical
retrieval. For all the models examined, it appears that SPLADE
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Figure 1: Radar charts comparing nDCG@10 (left) and Recall@100 (right) of five retrieval models across all 18 datasets in BEIR.
The effectiveness of BM25 (dotted line) is scaled to half of the radius of the chart area, and the effectiveness of the other models
is scaled accordingly.

exhibits the most consistent gains, with only a few datasets where
nDCG@10 is worse than BM25.

Focusing on Recall@100 (Figure 1, right), we believe that the
radar chart is similarly helpful in highlighting effectiveness differ-
ences between the models that are obscured by only looking at the
means. In particular, conclusions drawn from the nDCG@10 scores
differ from those based on Recall@100: both metrics are important,
but for different reasons. Early precision metrics such as nDCG@10
directly quantify output quality if results from a first-stage retriever
are directly presented to the user. On the other hand, Recall@100
quantifies the upper bound of reranking effectiveness. Based on
the radar chart, we clearly see that neural models do not consis-
tently increase effectiveness. We observe large gains—for example,
all four models perform very well on NQ and DBPedia—but we
also observe many cases where at least some of the neural models
perform poorly—for example, on Signal-1M and BioASQ.

We have some explanations for these findings. First, let us con-
sider the poor effectiveness of dense retrieval models on TREC-
COVID and BioASQ. BioASQ involves scientific paper retrieval
given a biomedical query that often involves specialized termi-
nology (and similarly for TREC-COVID as well). As an example,
consider the BioASQ query, “Is AZD5153 active in prostate cancer?”
Here, “AZD5153” is a specialized biomedical term, which the model
most likely has seen only rarely during training. This would cause
issues for dense retrievers, as they are unable to represent rare
terms well within the embedding space, and hence retrieval effec-
tiveness would suffer. That is, poor effectiveness can be explained
by domain shifts between training data (general web) and the test
data (biomedical texts). On the other hand, sparse models such as
SPLADE or uniCOIL produce representations that retain lexical
matching, and thus are less impacted by domain shifts involving
vocabulary differences. The relatively poor effectiveness of models
on Signal-1M (tweets) can be explained similarly.

Second, we observe that all transformer models achieve big gains
on NQ. Previous work has found that effectiveness on NQ and

effectiveness on the TREC 2019 Deep Learning (DL) track have the
highest correlation among all BEIR datasets in terms of scores [49]
(that is, models that perform well on TREC DL also perform well
on NQ). The close connections between the MS MARCO datasets
and the TREC Deep Learning tracks suggest that transfer from MS
MARCO is particularly advantageous for the NQ dataset. Since all
models examined in this paper take advantage of MS MARCO, the
big gains on NQ might be a data artifact and not a demonstration
of robust domain transfer capabilities.

Finally, it appears that all transformer models perform worse
than the BM25 baseline for Touché 2020, sometimes by sizeable
margins. This, in fact, led to an in-depth exploration described
in Thakur et al. [39], which untangled a number of interacting
factors, but still concludes that BM25 outperforms many neural
retrieval models.

Our point here is not to exhaustively explain all the effectiveness
differences observed, although we do offer some analyses above.
Instead, our contribution is a methodological tool (i.e., visualiza-
tions using radar charts) that provides a starting point for further
analyses. Beyond support for error analyses, we believe that these
radar chart visualizations are helpful for practitioners who might
be interested in deploying neural models. From the perspective
of real-world applications, it would make sense to ensure that a
deployed model “performs no worse” than BM25, and thus these
results lead us to conclude that none of the models are viable as
a replacement yet, given that there are clearly situations where
effectiveness is substantially lower.

5 REPRODUCIBLE IMPLEMENTATIONS
We provide reproducible implementations of the retrieval models
discussed in this paper. At a high level, our goal is to make it as easy
as possible for researchers to reproduce the results in Table 2. To be
precise, here we are using reproducibility in the sense articulated by
the ACM in its Artifact Review and Badging Policy,3 characterized
3https://www.acm.org/publications/policies/artifact-review-and-badging-current
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as “different team, same experimental setup”. Specifically, “this
means that an independent group can obtain the same result using
the author’s own artifacts.”

Our reproducible implementations conform to the aspirational
ideal of “two-click reproductions” described by Lin [26]. The moti-
vation is that a user should be able to reproduce an experimental
result with only two clicks: a “copy” and a “paste” from a documen-
tation page. That is, the user will arrive at the same nDCG@10 and
Recall@100 reported in Table 2.

To accomplish this, we leverage previous efforts and infrastruc-
ture investments in the Pyserini IR toolkit [28], which is built on
Anserini [47]. Anserini is an IR toolkit built on the open-source
Lucene search library, and like Lucene, it was written in Java. To pro-
vide compatibility with Python, the dominant language for building
neural retrieval models today, we developed Pyserini, which pro-
vides Python bindings for Anserini as well as many other non-Java
capabilities.

In our design, BM25 baselines and sparse retrieval models are
directly implemented in Anserini with Lucene inverted indexes,
exposed in Pyserini in Python. The dense retrieval models are im-
plemented using the Faiss library [20] for efficient similarity search
and clustering of dense vectors by Meta Research; for simplicity,
we used flat indexes. Pyserini provides a uniform API to support
retrieval using all the models, for example, abstracting over the
Java-based implementation of retrieval using BM25 and the sparse
retrieval models.

To provide a concrete example, performing a BM25 retrieval
run over the test queries in the BioASQ corpus in BEIR can be
accomplished by the following command:

python -m pyserini.search.lucene \
--index beir-v1.0.0-bioasq.multifield \
--topics beir-v1.0.0-bioasq-test \
--output run.beir-multifield.bioasq.txt \
--output-format trec \
--batch 36 --threads 12 \
--hits 1000 --bm25 --fields contents=1.0 title=1.0

The main driver program for searching Lucene inverted indexes is
pyserini.search.lucene. In this example, we are using multi-field
BM25, with equal weights set to both the “title” and “contents”
fields (by default), specified using the --fields command-line ar-
gument. The remaining arguments are mostly self-explanatory, but
we provide additional commentary:

The --index argument specifies a prebuilt inverted index for the
BioASQ corpus that is stored on our group’s servers. On the first
invocation of the above command, the driver automatically down-
loads the index and caches it on the local machine. The --topics

argument specifies the BioASQ test queries, which are already in-
cluded as part of Pyserini. With this design, the user does not need
to separately figure out where to download the indexes and queries
to successfully reproduce a result.

Pyserini also includes all the components necessary to evalu-
ate the retrieval results. In this case, the nDCG@10 score can be
computed as follows:

python -m pyserini.eval.trec_eval \
-c -m ndcg_cut.10 beir-v1.0.0-bioasq-test \
run.beir-multifield.bioasq.txt

We provide a wrapper around the trec_eval package, and relevance
judgments are included in Pyserini. Once again, this saves the user
additional effort in needing to track down evaluation tools and
relevance judgments from various web sources.

Modern IR evaluation methodology can be quite complex, but
with our “two click reproductions”, the two commands above will
produce the results in Table 2. We have built a landing page4 in the
Pyserini documentation that provides an entry point to a “repro-
duction matrix” comprising all models and all datasets.

6 MODEL VARIANTS
The models presented in Section 3 cover the major approaches to
neural retrieval today. In this section, we further examine variants
that help us better understand some of the strengths and limitations
of those models.

6.1 Multi-Field Indexing
A baseline “as simple as BM25” still presents a number of design
decisions that may impact effectiveness in substantive ways. One
such choice made by Thakur et al. [40] in the initial BEIR release is
the use of multi-field indexing in the BM25 baseline. That is, the
title and main body of each document were separately indexed,
inserted into the “title” and “contents” fields, respectively. At search
time, a multi-field (Lucene) query combines evidence from both
fields (with equal weights).

What is the impact of this document structure on effectiveness?
We can answer this question with a variant that we call “flat” BM25,
where the title and the main body of each document are concate-
nated together and indexed in a single field. These results are shown
in Table 3 under the “flat” column; the “multifield” column refers to
the default BM25 configuration from Table 2. Following the analy-
ses in Section 4, the radar chart visualization comparing “flat” to
“multifield” BM25 is shown in Figure 2, with the latter configuration
as the reference. The radar chart shows that in some cases “flat”
is better (e.g., BioASQ, HotpotQA, and Touché 2020) and in other
cases, it is worse (e.g., TREC-COVID, FEVER, and Climate-FEVER),
but overall the differences are relatively small. It is hard to draw re-
liable conclusions, as these differences primarily stem from corpus
organization, which obviously varies across the datasets.

Another important decision in building a BM25 baseline is the
choice of tokenization and stemming. In Lucene, an abstraction
called the analyzer is responsible for converting a sequence of
bytes into a sequence of tokens. In all the BM25 variants discussed
above, we used Lucene’s default analyzer for English. In contrast,
the sparse representation models use BERT’s wordpiece vocabulary.
Since the two vocabulary spaces are different, one might argue that
comparisons are not fair. To examine these effects, we applied the
wordpiece tokenizer to the “flat” BM25 condition.

The results are shown in the “flat-wp” column of Table 2, and vi-
sualized in the radar chart shown in Figure 2 (left). Once again, the
differences are relatively small, but it does appear that wordpiece
tokenization consistently degrades effectiveness. This occurs be-
cause wordpiece tokenization often chops long content words into
shorter subwords that are polysemous, hence introducing noise.

4https://castorini.github.io/pyserini/2cr/beir.html

https://castorini.github.io/pyserini/2cr/beir.html
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Task BM25 TASB Dense–Sparse Hybrid
multifield flat flat-wp FirstP MaxP (10/5) MaxP (8/4) Contriever SPLADE Hybrid

TREC-COVID 0.656 0.595 0.565 0.481 0.491 0.505 0.596 0.727 0.723
BioASQ 0.465 0.522 0.419 0.360 0.367 0.371 0.383 0.498 0.457
NFCorpus 0.325 0.322 0.314 0.319 0.321 0.324 0.328 0.347 0.348
NQ 0.329 0.305 0.305 0.463 0.463 0.465 0.498 0.538 0.552
HotpotQA 0.603 0.633 0.593 0.584 0.584 0.584 0.638 0.687 0.684
FiQA-2018 0.236 0.236 0.218 0.300 0.295 0.296 0.329 0.347 0.361
Signal-1M 0.330 0.330 0.350 0.288 0.288 0.289 0.278 0.301 0.296
TREC-NEWS 0.398 0.395 0.361 0.377 0.398 0.394 0.428 0.415 0.468
Robust04 0.407 0.407 0.377 0.428 0.455 0.461 0.473 0.468 0.493
ArguAna 0.414 0.397 0.364 0.427 0.433 0.436 0.446 0.520 0.517
Touché 2020 0.367 0.442 0.466 0.163 0.215 0.222 0.204 0.247 0.233
CQADupStack 0.299 0.302 0.295 0.314 0.309 0.309 0.345 0.334 0.354
Quora 0.789 0.789 0.730 0.835 0.835 0.835 0.865 0.834 0.858
DBPedia 0.313 0.318 0.284 0.384 0.384 0.384 0.413 0.437 0.449
SCIDOCS 0.158 0.149 0.138 0.149 0.147 0.146 0.165 0.159 0.172
FEVER 0.753 0.651 0.658 0.700 0.724 0.733 0.758 0.788 0.791
Climate-FEVER 0.213 0.165 0.158 0.228 0.241 0.237 0.237 0.230 0.265
SciFact 0.665 0.679 0.672 0.643 0.645 0.644 0.677 0.704 0.715

Avg. nDCG@10 0.429 0.424 0.404 0.414 0.422 0.424 0.448 0.477 0.485

Table 3: Effectiveness (in terms of nDCG@10) of model variants across all 18 datasets in BEIR.

6.2 Searching Long Documents
One well-known issue with retrieval methods built on pretrained
transformers is that the underlying models have length restrictions
in input text; see Lin et al. [29] for extensive discussions of this topic.
The two commonly adopted solutions are to either encode only the
first 𝑁 tokens in each document or to segment a longer document
into passages and encode each passage independently. In the termi-
nology of Dai and Callan [8], these approaches are known as FirstP
and MaxP, respectively. With MaxP, multiple representations are
generated per document, and at retrieval time, the maximum of the
passage scores is taken as the score of the document; this heuristic
itself dates back to at least the 1990s [5, 15].

Curiously, most papers that report evaluations on BEIR contain
no explicit discussions about how long documents were processed.
Based on informal communications with model developers and
examination of available open-source implementations, it appears
that most researchers apply the FirstP approach. That is, they simply
truncate each document to the first 𝑁 tokens (where 𝑁 varies by
model). This, of course, begs the question of whether different
techniques for searching long documents “make a difference”.

We conducted experiments to answer this question. Given the
vast design space of options for segmenting longer documents into
shorter passages, we built on previous work that explored some
of the design choices. Following Pradeep et al. [33] and later work
by Ma et al. [30], we decided to segment documents into sliding
windows of 𝑛 sentences. Based on their previous explorations, we
examined two configurations: a sliding window of 10 sentences
with a stride of 5 sentences, and an 8/4 combination. Passages
based on sentences yield variable-length passages, in contrast to
the obvious alternative of using fixed-length windows. However,
sentence-basedwindows preserve natural discourse units and better

encapsulate context that might be useful for determining relevance.
For these experiments, we used the sentence chunker in spaCy
(version 3.4.4).

Experimental results are presented in Table 3, shown for the
dense retrieval model TAS-B; the corresponding radar chart is
shown in Figure 2 (middle). The visualization makes it clear that
MaxP does yield some gains—in 15 out of the 18 datasets—but the
overall differences are small. Based on these results, we would ar-
gue that to evaluate future models, FirstP is “good enough”, since
methodological consistency is likely more important. That is, com-
paring FirstP on dense model𝐴with MaxP on dense model 𝐵 would
introduce confusion and conflate unrelated factors.

6.3 Hybrid Fusion
One clear takeaway from Section 4 is that the effectiveness of zero-
shot transfer for both learned dense and learned sparse represen-
tations is inconsistent across the 18 BEIR datasets. From the radar
charts, we see some clear gains, for example, on NQ, but also cases
where some models underperform, most notably, dense retrieval
models on BioASQ. In such cases, hybrid fusion techniques can per-
haps be helpful in combining evidence from different sources.While
this general idea dates back several decades at least [3], more recent
work has demonstrated that fusion between lexical and semantic
representations work particularly well [14, 31]. Furthermore, the
fusion of BM25 with dense [46] and sparse [10] representations has
already been shown to be effective.

This work explored fusion techniques further, primarily to see
whether we can combine multiple sources of evidence to achieve
consistent gains across all BEIR datasets. We applied the simple
dense–sparse hybrid fusion techniques described by Ma et al. [31]
to combine Contriever and SPLADE, the most effective dense and
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Figure 2: Radar charts visualizing the effectiveness (in terms of nDCG@10) of different model variants: BM25 variants (left),
techniques for searching long documents (middle), and dense–sparse hybrids (right).

sparse retrieval models, respectively. Specifically, we first retrieved
the top 1000 documents separately using each model. We then
normalized the relevance scores from each source into the range
[0, 1] and computed the final hybrid score as the average of the two
scores to produce new rankings for evaluation.

Experimental results are presented in Table 3 in the rightmost
column, “Hybrid”. The nDCG@10 figures for the two sources, Con-
triever and SPLADE, are copied from Table 2 for convenience. We
see that, in general, the hybrid approach improves over the best
individual model, with four exceptions: BioASQ, Touché 2020, Ar-
guAna, and Quora, although for the last two, the differences are
quite small.

How does this fusion run compare to BM25? The radar chart
visualization that answers this question is shown in Figure 2 (right),
where we plot the effectiveness of Contriever, SPLADE, and our hy-
brid approach with BM25 as the reference. Table 3 shows more than
a six-point gain on average, but more importantly, the radar chart
visualization shows that the gains are consistent. We see that the hy-
brid beats BM25 on all but two datasets: Signal-1M and Touché 2020.
In particular, the visualization makes it clear that SPLADE is able
to compensate for the poor effectiveness of Contriever on BioASQ
and TREC-COVID, and in cases where Contriever is more effective
than SPLADE, the hybrid approach further boosts effectiveness.
Simple score averaging seems to achieve the best of both worlds,
and this dense–sparse hybrid appears to attain a level of robustness
that none of the other models exhibit.

7 META-ANALYSES
The final contribution of this work is to illustrate the use of meta-
analyses for comparing evaluation results on BEIR. The common
practice for reporting results is to provide nDCG@10 scores for
each task along with a macro-average that aggregates the individual
scores, as we have done in Table 2. Models that achieve higher
average scores are considered to be “better” in possessing out-of-
domain generalization capabilities. Although easy-to-compute and
prevalent (e.g., [42–44]), averaging scores across different datasets
is inherently flawed because (1) the scores are not comparable
[16, 37], (2) simple averages are susceptible to outliers [32], and (3)
such an approach overlooks the intrinsic difficulty of individual

datasets by ignoring effect sizes [7, 38]. Thus, simple averages fail
to capture how well models perform in reality.

As a remedy to these issues, we turn to meta-analyses, which
are designed to integrate evidence from multiple sources in order
to arrive at a holistic conclusion [38]. To this end, an effect size is
first determined for each task, before combining them using the
random-effects model that assumes the true effect size varies across
datasets. We opted for the raw mean difference to estimate effect
sizes, following Soboroff [38] and Sertkan et al. [37]. Specifically,
we used the Ranger toolkit [37] to compute confidence intervals
for significance testing.

Here, we present a case study that illustrates an application
of meta-analysis. In particular, our goal is to explore the impact
of dense–sparse hybrid models on BEIR, since according to Ta-
ble 3, the model appears to be the most effective. However, can
we make stronger statements about the significance of effective-
ness differences compared to the base SPLADE and Contriever
models? Figure 3 presents forest plots visualizing the effect size
and the confidence interval for each dataset, comparing the hybrid
model against Contriever (on the left) and against SPLADE (on
the right). The summary effect row shows that overall, the hybrid
model significantly outperforms Contriever and SPLADE. However,
this analysis shows that the hybrid approach is only significantly
better than SPLADE alone in 14 out of the 29 cases, and 16 out of
the 29 cases for Contriever alone.

While this specific exploration is only focused on comparing
three models, our meta-analyses are able to reveal more insights
than comparison of simple macro-averages. We advocate the use of
such approaches to more definitively answer the question: Is this
model really better than that one?

8 CONCLUSIONS AND FUTUREWORK
The BEIR benchmark provides an important instrument for evaluat-
ing the cross-domain robustness of retrieval models and has gained
traction due to the growing recognition of retrieval as a form of
representation learning. The efforts described in this paper address
two shortcomings that we have identified with BEIR: challenges in
reproducibility and in comparing results. Reproducible reference
implementations in the Pyserini IR toolkit tackle the first challenge.
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Figure 3: Forest plots visualizing meta-analyses (in terms of nDCG@10) of different model variants: Contriever vs. dense–sparse
hybrid (left) and SPLADE vs. dense–sparse hybrid (right).

Meta-analyses for robust comparisons beyond macro-averages with
statistical rigor target the second challenge.

We are optimistic about the future of BEIR. It has become an
important evaluation instrument for the community to address a
number of important research questions. This work mitigates two
existing shortcomings, and while there remain more challenges
ahead, BEIR has already and will continue to help advance the state
of the art.
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