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ABSTRACT
The paradigm of fine-tuning Pre-trained Language Models (PLMs)
has been successful in Entity Matching (EM). Despite their remark-
able performance, PLMs exhibit tendency to learn spurious corre-
lations from training data. In this work, we aim at investigating
whether PLM-based entity matching models can be trusted in real-
world applications where data distribution is different from that of
training. To this end, we design an evaluation benchmark to assess
the robustness of EM models to facilitate their deployment in the
real-world settings. Our assessments reveal that data imbalance in
the training data is a key problem for robustness. We also find that
data augmentation alone is not sufficient to make a model robust.
As a remedy, we prescribe simple modifications that can improve
the robustness of PLM-based EM models. Our experiments show
that while yielding superior results for in-domain generalization,
our proposed model significantly improves the model robustness,
compared to state-of-the-art EM models.

CCS CONCEPTS
• Information systems → Entity resolution; Data manage-
ment systems; • Information integration → Entity resolution; •
Entity Matching;
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1 INTRODUCTION
In many real-world applications where data is integrated from
multiple sources, matching mentions that refer to the same real-
world entities is crucial. Entity Matching (EM) aims at automatically
detecting such mentions or records that are likely derived from
different schemas.With the recent success of transfer-learning from
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large pre-trained language models (PLMs) [4, 5, 18, 19] in many NLP
tasks, EM models such as Ditto [12] have followed suit to leverage
PLMs for EM. The paradigm of fine-tuning PLMs have achieved
remarkable performance on several well-known EM benchmarks.
Despite their success and popularity, PLMs are no panacea [2].
Numerous studies [14, 16] have found their tendency to learn the
underlying spurious patterns in data. This essentially means that
PLMs tend to acquire a superficial understanding of the task at
hand and are more likely to fail under different circumstances such
as distribution shift. Such shortcomings lead to inexplicable errors
that inhibit their deployment in real-world applications.

EM can also be vulnerable to these problems. In this work, we
investigate whether PLM-based models can be deployed for entity
matching “in the wild,” where the distribution of the test data often
differs from that of the training data in a real-word setting. This is
especially pivotal in EM as stored data from different sources are
hardly homogeneous [1]. To this end, we study the robustness of
these models to shed light on their pitfalls under various distribu-
tion shifts. Our focus in this paper is on “structured” data where
the content of the records and the ordering of the fields vary from
one domain to next. For this purpose, we first fine-tune a PLM-
based model on a dataset, then evaluate it on several crafted test
benchmarks in a zero-shot fashion. The benchmarks are created
to evaluate EM models for two types of robustness that are preva-
lent in the real-world settings: domain shift and structural shifts.
For domain shift, we conduct out-of-domain evaluations and for
structural shifts, we devise perturbation strategies to modify the
structure of tuples without altering the matching outcome.

In addition to the distribution shift and the change in structure
between domains, the EM data is highly imbalanced. Table 1 shows
this phenomenon for several well-known datasets. Data Augmen-
tation (DA) is a common technique to circumvent this problem. In
essence, DA makes a model invariant to changes that are less rele-
vant to the task. Although shown effective, we find that DA alone is
not sufficient for building a model that is robust to distribution shift.
As a remedy, we propose a simple loss function to strengthen the
models’ ability to put more emphasis on the minority label. We also
provide two other recommendations to make PLM-based EM mod-
els more robust. Our experiments corroborate that our proposed
model is more robust than the state-of-the-art EM models1.

Our main contributions can be summarized as follows: (1) We
investigate the impact of common strategies in EM models from
the robustness perspective. (2) We design an evaluation framework
to test the robustness of EM models under various distribution
shifts. (3) Based on our findings, we propose simple modifications

1Our code and models are released at https://github.com/makbn/robem
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to Ditto, the state-of-the-art EM model, to build a robust model that
surpasses Ditto on in-domain tests as well as out-of-domain tests.

2 RELATEDWORK
EM prior to PLMs. EM has long been studied in the database com-

munity under different names such as data deduplication, record
linkage, etc. [6]. Early EMmodels were rule-based [7, 20] or aimed at
learning matching functions [3] using traditional machine learning.
In the deep learning era, most EM models leverage deep neural net-
works. DeepMatcher [15], a prominent EM model, uses RNNs and
the attention mechanism. Auto-EM [23] applies transfer learning,
analogous to the popular trend in PLMs, to learn from a general-
purpose model, trained on massive knowledge bases.

PLM-based EM. Recent EM models have shifted to the paradigm
of fine-tuning PLMs to tackle the problem. Ditto [12], the state-of-
the-art EMmodel, concatenates a pair of records to form a sequence
and fine-tunes a PLM using a sequence classification objective.
JointBERT [17] uses a dual-objective training method that combines
binary matching and multi-class classification that forces the model
to predict entity identifiers as well as matching decisions.

Domain Adaptation in EM. The goal of domain adaptation is
to generalize to new domains through learning from unlabeled
examples. In EM, recent works such as DAME [21] focus on trans-
ferring knowledge from multiple sources to a target domain using
a Mixture-of-Experts model.

3 PRELIMINARIES
The goal of EM is to successfully match mentions, derived from pre-
sumably different data sources, that refer to the same real-world en-
tity. In this work, our focus is on the structured data wherementions
are stored as tuples [15]. In particular, suppose 𝐴 = {𝐴0, 𝐴1, ..., 𝐴𝑛}
and 𝐵 = {𝐵0, 𝐵1, ..., 𝐵𝑚} denote two data sources where 𝐴𝑖 and
𝐵 𝑗 represent records in each data source. Each record consists of
several attributes — i.e., 𝐴𝑖 = (𝑎1, 𝑎2, 𝑎3, ...𝑎𝑘 ). 𝐴𝑖 = 𝐵 𝑗 if and only
if both𝐴𝑖 and 𝐵 𝑗 depict the same real-world entity. EM is character-
ized as a binary classification task to predict whether two records
are identical or not. In a PLM-based EM model, two records are
concatenated together, separated by a special token. The model is
fine-tuned using a sequence classification objective.

4 ROBEM: A ROBUST ENTITY MATCHER
We build our model, namely RobEM, atop Ditto, the state-of-the-art
EM model, that leverages PLMs for identifying identical pairs. Our
main focus is to make a PLM-based model for EM more robust. To
this end, we modify Ditto as discussed next.

Data Imbalance. In EM datasets, there is an extreme imbalance
between examples labelled as negative and positive [1], rendering
the negative examples as the majority class. However, Ditto and
other prominent EM models use the standard cross-entropy loss,
which does not take into account the data imbalance during train-
ing. We circumvent this problem by a common method, known as
weighted cross-entropy, that is basically the standard cross-entropy,
albeit with weights for each class [24]. The weights are typically
proportional to the frequency of each class in the training data [11].

Dispensing with Attribute Names. In practice, structured records
are collected from anywhere in the web. These records may lack
attribute names due to a variety of reasons — e.g., parsing diffi-
culties, or missing information. However, using attribute names
is a common practice in EM [12, 15]. As a result, EM models are
likely to become impaired when faced with circumstances where
attribute headers are not given, curbing their robustness capabili-
ties. To overcome this issue, we dispense with the assumption that
attribute names are present in the data to account for such cases.
This essentially denotes that our model purely relies on the content
of each record for matching.

Classifier Head. In Ditto, the task-specific classification head that
projects the output of a PLM to logits is a linear layer. However, due
to the complexity of the task, adding a non-linearity in this layer
can be helpful. Thus, we employ tanh with dropout, following the
classifier head in RoBERTa [13], in the task-specific classifier head:

𝑦 =𝑊2 · tanh(𝑊1 · 𝐸 ′[CLS] + 𝑏1) + 𝑏2 . (1)

Moreover, we introduce a simple baseline, dubbed UnsupEM, that
takes an off-the-shelf PLM to determine whether two tuples are
equivalent based on their similarity in the embedding space. In
particular, we first feed each tuple into a PLM and take the output of
the [CLS] token as the representation of the tuple.We then compute
cosine similarity between the two representations. A similarity that
is above a certain threshold indicates equivalency.

5 EM ROBUSTNESS BENCHMARK
To assess the robustness capabilities of EM models, we devise a
series of probing tests, simulating the distribution shifts that may
arise in real-world scenarios. The first test is domain shift — or
out-of-domain — where the domain of test data differs from that
of training data. Our main goal here is to understand whether
PLM-based EM models have actually mastered the task rather than
relying on spurious patterns in the data. To this end, amodel, trained
on one dataset, is tested against the other datasets.

The next series of tests attempt to replicate schema discrepancies
between the tuples from two different data sources. For this pur-
pose, we check the invariance against structural shifts via applying
the following perturbation operations on the original test data to
produce 5 new test sets.

Figure 1: Perturbation operations for the schema discrepancy
robustness benchmark. Key columns are shown in italic.
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(1) Robustness to columnorder (SFF): The ordering of columns
does not affect the matching result between a pair of tuples.
To ensure this condition, we shuffle columns of a tuple for
each example in the test data.

(2) Robustness to absence of non-key columns (DRP): Non-
key columns are columns that do not contribute to the match-
ing result between a pair of tuples — e.g., price in Figure 1.
Matching should remain invariant to inclusion or exclusion
of non-key columns. This condition is enforced by randomly
dropping one or more non-key columns.

(3) Robustness to missing values (MIS): The existence of
missing values is prevalent when dealing with noisy data
sources such as web tables. To imitate this, we randomly
replace one or more non-key columns with NULL.

(4) Robustness to extraneous columns (EXT): The presence
of irrelevant non-key columns does not affect the match-
ing result between a pair of tuples. We enforce this case by
randomly adding columns from other datasets for each test
example.

(5) Robustness to different data types (TYP): Data entries
can be expressed in a handful of ways without changing
their semantics. This is especially the case for numerical
values. For instance, “1k” is equivalent to “1,000” and “1e3”.
We curate several hand-crafted rules to randomly convert
numbers to different formats to enforce this condition.

6 EXPERIMENTS
Setup. We implemented ourmodels using theHuggingface Trans-

formers library [22]. We select RoBERTabase [13], a well-known
PLM, that is shown to be effective in EM [12]. We follow the hy-
perparameter configuration of Ditto for training our models. In
particular, we set the maximum sequence length to 256, the batch
size to 64, and the number of epochs to 40. The learning rate is set
to 3𝑒-5 with a linear decay. All experiments were conducted on a
single Nvidia V100 32GB GPU.

Datasets. We use 8 datasets, introduced in DeepMatcher [15].
The datasets are derived from an entity resolution benchmark [10]
as well as the Magellan data repository [9]. The datasets are col-
lected from a wide range of domains including products, publica-
tions, and businesses. For all datasets, each example consists of
candidate pairs from two structured tables within the same schema.
Table 1 presents the size of each dataset.

Table 1: Datasets size. P. refers to the tuple pairs marked as a
match. And N. is the Number of non-matched instances.

Dataset Train Set (N./P.) Test Set (N./P.)
iTunes-Amazon 243 / 78 82 / 27
Amazon-Google 6175 / 699 2059 / 234
BeerAdvo-RateBeer 228 / 40 77/14
DBLP-ACM 6085 / 1332 2029 / 444
DBLP-Scholar 14016 / 3207 4672 / 1070
Fodors-Zagats 501 / 66 167 / 22
Walmart-Amazon 5568 / 576 1856 / 193
Abt-Buy 5127 / 616 1710 / 206

6.1 In-Domain Generalization
We first examine the generalization of EM models to unseen test
data that are from the same domain as the training data. For in-
domain experiments, we compare our results with two prominent
neural entity matching models: Deepmatcher+ [8], an RNN-based
model, and Ditto [12], a PLM-based model with the same number
of parameters.

As presented in Table 2, RobEM consistently surpasses Ditto,
on all datasets, except for two datasets, iTunes-Amazon (-1.65%),
and DBLP-Scholar (-0.22%). Interestingly, the highest performance
gain (+8.99%) is achieved on Abt-Buy. UnsupEM understandably
trails all the baselines and RobEM on all datasets because it does
not exploit any supervised signals from the data.

6.2 Out-of-Domain Generalization
We compare RobEM with UnsupEM and Ditto in out-of-domain
experiments. UnsupEM offers a lower bound for supervised models.
The vis-a-vis results — i.e., the difference between RobEM and the
baselines — that consist of 56 runs are reported in Figure 2. Only on
15 cases in total, RobEM lags behind UnsupEM. Furthermore, when
trained on BeerAdvo-RateBeer, RobEM struggles most with out-
of-domain generalization. On the other hand, the models that are
trained on iTunes-Amazon and BeerAdvo-RateBeer significantly
outperform Ditto on all 7 datasets. In total, RobEM trails Ditto on
17 cases. Overall, the improvements of RobEM over UnsupEM and
Ditto are statistically significant in 34 and 31 cases, respectively.
Finally, we find that UnsupEM is a strong baseline in out-of-domain
tests, leading both RobEM and Ditto on 13 tests.

Figure 2: Difference between F1 scores of RobEM and two
baselines, Ditto (right) and UnsupEM (left) in zero-shot out-
of-domain experiments.

6.3 Data Augmentation
Data augmentation (DA) is a long known technique to counter data
imbalance and to boost the generalization capabilities of models. In
this section, we aim at evaluating RobEM and Ditto when trained
on augmented data. We follow the DA method, presented in Ditto.
In particular, Ditto DA involves generating augmented data online
during training. Each example is augmented via a series of con-
secutive operations that randomly perturb attributes and tokens.
Following Ditto, we generate one augmented sample for each train-
ing example. The in-domain results for DA are presented in the
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Table 2: F1 scores for in-domain experiments. DeepMatcher+ and Ditto results are taken verbatim from [12].

Dataset DeepMatcher+ UnsupEM Ditto (DK) RobEM Ditto (All) + DA RobEM + DA
iTunes-Amazon 91.2 54.54 97.80 96.15 -1.65 97.06 98.18 +1.12
Abt-Buy 62.8 21.84 81.69 90.68 +8.99 89.33 90.9 +1.57
Amazon-Google 70.7 31.04 74.67 76.64 +1.97 75.58 79.06 +3.48
BeerAdvo-RateBeer 78.8 64.70 90.46 93.33 +2.87 94.37 96.55 +2.18
DBLP-ACM 98.45 92.77 99.10 99.21 +0.11 98.99 99.10 +0.11
DBLP-Scholar 94.7 69.77 95.80 95.62 -0.22 95.60 95.86 +0.26
Fodors-Zagats 100.0 86.95 100.00 100.00 0.00 100.00 100.00 0.00
Walmart-Amazon 73.6 29.85 83.73 86.68 +2.95 86.76 84.61 -2.15

Figure 3: Difference between F1 scores of RobEM+DA and
Ditto+DA in zero-shot out-of-domain experiments.

right columns of Table 2. DA does not improve the in-domain per-
formance of Ditto on three datasets, iTunes-Amazon, DBLP-ACM,
and DBLP-Scholar. However, DA brings in-domain improvements
for RobEM on all datasets but two cases. RobEM+DA consistently
outperforms Ditto+DA on all datasets, except on Walmart-Amazon.

In the out-of-domain experiments, the results, presented in Fig-
ure 3, are consistent with our findings in Figure 2(b). Specifically,
RobEM+DA, trained on iTunes-Amazon, BeerAdvo-RateBeer, and
Walmart-Amazon, outperforms Ditto on all 7 datasets by a signif-
icant margin, except for one case. DA helps RobEM, trained on
Amazon-Google, to achieve better results than Ditto on 5 datasets.
However, when comparing RobEM with DA and without, we find
using DA improves 3 out of 56 tests. This essentially highlights that
DA is not necessarily useful for robustness under domain shift.

6.4 Schema Discrepancy Generalization
We conduct our robustness test only on the best performing mod-
els from the out-of-domain experiment. More precisely, we adopt
the models, trained on iTunes-Amazon using DA throughout this
section. We surmise that our findings can be extended to other
datasets as well. To understand the impact of DA, we employ DA
techniques, akin to the ones we adopted to generate the robustness
benchmark in Section 5. The idea is to imitate the cases of potential
distribution shift to teach the model during training. For brevity,
we only use the methods for SFF in this experiment to generate
augmented datasets offline:

Table 3: F1 scores on iTunes-Amazon dataset on our EM ro-
bustness benchmark. The perturbation operations are de-
fined in Section 5.

DA in-
domain SFF DRP MIS EXT TYP ∆avg

R
ob

EM

SF 96.15 91.6 93.35 96.15 95.74 97.13 -1.35
SW 98.11 93.83 96.29 97.69 99.25 97.95 -1.10
Ditto 98.18 96.8 98.11 98.11 97.74 98.11 -0.40

D
it
to

SF 96.42 95.47 91.94 96.42 96.42 93.69 -1.63
SW 94.54 90.29 91.78 92.85 92.96 94.54 -2.05
Ditto 93.10 92.81 89.47 90.56 93.76 93.10 -1.16

• Tuple Swap (SW), inspired by Ditto, refers to swapping the
left tuple with the right one for each training example.

• Attribute Shuffle (SF), inspired by Ditto, shuffles the order
of attributes for each training example.

Table 3 shows the results, averaged over 20 runs, for RobEM and
Ditto on our robustness benchmark. We report the average perfor-
mance drop (Δavg), compared to in-domain results2. We observe
that Ditto DA method is more robust, compared to SW and SF as it
yields the lowest performance drop for both RobEM and Ditto. Also,
RobEM is consistently more robust than Ditto across all three DA
methods. Interestingly, SFF and DRP are the two most challenging
perturbation tests for RobEM and Ditto, respectively.

7 CONCLUSION
In this work, we investigated the robustness capabilities of EMmod-
els under domain shifts and structrual shifts. We prescribe simple
guidelines to build robust models that are suitable for deployment
in the wild. Our proposed model outperforms the state-of-the-art
PLM-based EM model under distribution shift. We hope that our
findings spurs development of more robust EM models. Also, our
robustness benchmark can be a basis for a thorough assessment of
future EM models. We plan to explore unstructured data, complex
data augmentation techniques and other forms of distribution shift
as future directions.
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